Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38399916

RESUMO

Amidst escalating environmental concerns, short natural-fiber thermoplastic (SNFT) biocomposites have emerged as sustainable materials for the eco-friendly production of mechanical components. However, their limited durability has prompted research into the experimental evaluation of the deterioration of the mechanical characteristics of SNFT biocomposites, particularly under the influence of ultraviolet rays. However, conducting tests to evaluate the mechanical properties can be time-consuming and expensive. In this study, an artificial neural network (ANN) model was employed to predict the mechanical properties (tensile strength) and the impact performance (resistance and absorbed energy) of polypropylene reinforced with 30 wt.% short flax or wood pine fibers (referred to as PP30-F or PP30-P, respectively). Eight parameters were collected from experimental studies. The ANN input parameters comprised nondestructive test results, including mass, hardness, roughness, and natural frequencies, while the output parameters were the tensile strength, the maximum impact load, and absorbed energy. The model was developed using the ANN toolbox in MATLAB. The linear coefficient of correlation and mean squared error were selected as the metrics for evaluating the performance function and accuracy of the ANN model. They calculate the relationship and the average squared difference between the predicted and actual values. The data analysis conducted by the models demonstrated exceptional predictive capability, achieving an accuracy rate exceeding 96%, which was deemed satisfactory. For both the PP30-F and PP30-P biocomposites, the ANN predictions deviated from the experimental data by 3, 5, and 6% with regard to the impact load, absorbed energy, and tensile strength, respectively.

2.
J Compos Mater ; 57(21): 3347-3364, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37663436

RESUMO

Designing bio-composites for structural applications requires a thorough understanding of their mechanical behavior. In this study, we examined the differences in the tensile strength and drop-weight impact response between polypropylene reinforced with flax fibers and that reinforced with pinewood short fibers, as both fibers differ in composition (cellulose, hemicellulose, and lignin) and length-to-diameter ratio. We found that flax fibers, which have higher cellulose content and are twice as long as pine fibers, increased the stiffness and shock resistance of bio-composite materials. However, pine fibers, which contain more lignin, showed increased material ductility and energy absorption. Impulse excitation, acoustic emission and micro-CT techniques were used to evaluate the post-impact mechanical properties and the contribution of each damage mechanism to the final material failure (tearing). The experimental results were used to validate a model based on finite elements. Our results revealed that the experimental and finite-element analyses were in good agreement.

3.
Polymers (Basel) ; 13(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946417

RESUMO

Wood-plastic composites have emerged and represent an alternative to conventional composites reinforced with synthetic carbon fiber or glass fiber-polymer. A wide variety of wood fibers are used in WPCs including birch fiber. Birch is a common hardwood tree that grows in cool areas such as the province of Quebec, Canada. The effect of the filler proportion on the mechanical properties, wettability, and thermal degradation of high-density polyethylene/birch fiber composite was studied. High-density polyethylene, birch fiber and maleic anhydride polyethylene as coupling agent were mixed and pressed to obtain test specimens. Tensile and flexural tests, scanning electron microscopy, dynamic mechanical analysis, differential scanning calorimetry, thermogravimetry analysis and surface energy measurement were carried out. The tensile elastic modulus increased by 210% as the fiber content reached 50% by weight while the flexural modulus increased by 236%. The water droplet contact angle always exceeded 90°, meaning that the material remained hydrophobic. The thermal decomposition mass loss increased proportional with the percentage of fiber, which degraded at a lower temperature than the HDPE did. Both the storage modulus and the loss modulus increased with the proportion of fiber. Based on differential scanning calorimetry, neither the fiber proportion nor the coupling agent proportion affected the material melting temperature.

4.
Int J Biol Macromol ; 168: 806-815, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33242548

RESUMO

Lignocellulosic fiber extracted from saltbush (Atriplex halimus L.) is characterized as reinforcement of composite materials. The morphological, physical, thermal and mechanical properties of fibers were addressed for the first time in this paper. The fibers were also subjected to chemical analysis. Stems were boiled in 0.5% sodium hydroxide (NaOH) or 10% sodium bicarbonate (NaHCO3). Optical and scanning electron microscopy images show an abundance of fiber in the form of thick-walled polygonal tubes. NaOH treatment yielded rough-surfaced fibers whereas the NaHCO3 treatment yielded smooth-surfaced fiber. Attenuated total reflectance Fourier transform infrared analysis revealed that NaOH treatment removed amorphous components. Based on x-ray diffraction, the crystallinity index increased from 55% to 57%. Thermogravimetry and differential scanning calorimetry showed that the fiber was thermally stable up to 220 °C and 235 °C with activation energies of 56 kJ/mol and 72 kJ/mol respectively for bicarbonate-treated and NaOH-treated material. In single-fiber tensile tests, the latter was stronger, with a Young's modulus of up to 19 GPa and tensile strength of 229 MPa.


Assuntos
Atriplex/química , Lignina/química , Varredura Diferencial de Calorimetria , Módulo de Elasticidade , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanotubos , Caules de Planta/química , Resistência à Tração , Termogravimetria , Difração de Raios X
5.
Materials (Basel) ; 8(11): 7322-7341, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28793640

RESUMO

Despite the knowledge gained in recent years regarding the use of acoustic emissions (AEs) in ecologically friendly, natural fiber-reinforced composites (including certain composites with bio-sourced matrices), there is still a knowledge gap in the understanding of the difference in damage behavior between green and biocomposites. Thus, this article investigates the behavior of two comparable green and biocomposites with tests that better reflect real-life applications, i.e., load-unloading and creep testing, to determine the evolution of the damage process. Comparing the mechanical results with the AE, it can be concluded that the addition of a coupling agent (CA) markedly reduced the ratio of AE damage to mechanical damage. CA had an extremely beneficial effect on green composites because the Kaiser effect was dominant during cyclic testing. During the creep tests, the use of a CA also avoided the transition to new damaging phases in both composites. The long-term applications of PE green material must be chosen carefully because bio and green composites with similar properties exhibited different damage processes in tests such as cycling and creep that could not be previously understood using only monotonic testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...